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It is well-known that NO is a very strongπ-acceptor ligand1
and that the extent of MfNO back-bonding plays a significant
role in determining the chemistry displayed by transition-metal
nitrosyl complexes. Typically, this back-bonding is manifested
both in nitrosyl ligand-based reactivity2 and in unusual chemical
behavior at the metal centers.3 To date it has also been established
that NO binds strongly to most of the d-block metals of groups
6-10 to afford series of important metallonitrosyl complexes.4

However, early-transition-metal nitrosyls are much fewer in
number despite the fact that in the lower formal oxidation states
required to complex NO effectively these metals would be
expected to be capable of particularly strong MfNO back-
bonding.5 For the group 5 elements, for instance, there are no
well-characterized niobium or tantalum nitrosyl complexes,
although some vanadium derivatives have been reported.6 We
now report the synthesis and characterization of (trimpsi)M(NO)-
(CO)2 (trimpsi ) tert-BuSi(CH2PMe2)3; M ) Nb, Ta), the first
nitrosyls of these elements (Scheme 1).
We reasoned that the paucity of early-transition-metal nitrosyl

complexes might be a manifestation of two factors. First, since
most nitrosylating agents are also rather unselective oxidants, their
use in the presence of the more oxophilic early transition metals
might tend to result in metal-oxo complexes rather than metal
nitrosyls.7 Second, electronic enhancement of the MfNO
π-interaction mentioned above might be an important prerequisite
to the formation of kinetically stable early metal nitrosyl
complexes. This enhancement could be achieved by establishing
a coligand set that significantly augments the overall electron
density at the metal center. Our successful implementation of

this reasoning is reflected in the chemistry summarized in Scheme
1. Thus, treatment of the hexacarbonyl metalates [Et4N][M(CO)6]
(M ) Nb, Ta)8 in DME (1,2-dimethoxyethane) with I2 at -78
°C produces solutions of the bimetallic anions [M2(µ-I)3(CO)8]-.9
Subsequent addition of the strongly electron-donating tripodal
phosphine, trimpsi,5 followed by warming affords the new
tricarbonyl iodide complexes (trimpsi)M(CO)3I (M ) Nb, 1; Ta,
2),10 which are isolable as free-flowing, air-stable, red micro-
crystalline solids in high yields.11 Reduction of DME solutions
of these materials generates solutions of the yellow metalates Na-
[(trimpsi)M(CO)3].12 Finally, treatment of these very air-sensitive
solutions at-78 °C with Diazald (N-methyl-N-nitroso-p-tolu-
enesulfonamide), a very selective and nonoxidative nitrosylating
agent,4 affords the air-sensitive complexes (trimpsi)M(NO)(CO)2

(M ) Nb, 3; Ta,4) in high yields (>70% overall) after workup.
By adhering to this general methodology (Scheme 1), multigram
quantities of high purity3 and4 have been prepared in under 2
days starting from the appropriate hexacarbonylmetalates.11

Complexes3 and 4 are thermally stable, purple crystalline
solids that are readily soluble in CH2Cl2, THF, and DME. The
IR spectra of3 and 4 as Nujol mulls exhibit strong nitrosyl-
stretching absorptions at 1518 and 1515 cm-1, respectively. These
frequencies are significantly lower in energy than analogous
absorptions displayed by related tungsten and vanadium com-
plexes such as (HB(3,5-Me2pz)3W(NO)(CO)2 (ν(NO) ) 1662
cm-1),13a [(tacn)W(NO)(CO)2]+ (ν(NO) ) 1630 cm-1),13b (η5-
C5H5)W(NO)(CO)2 (ν(NO)) 1655 cm-1),13c (CH3C(CH2PPh2)3)V-
(NO)(CO)2 (ν(NO) ) 1573 cm-1),6d and (Me2PCH2CH2PMe2)V-
(NO)(CO)3 (ν(NO) ) 1601 cm-1)6d and clearly attest to the
existence of strong MfNO back-bonding in these compounds.
X-ray diffraction analyses of314 and 415 reveal the solid-state
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molecular structures shown in Figures 1 and 2, respectively. As
anticipated, the geometries at the metal centers are essentially
octahedral, and in both structures, the tridentate phosphine exhibits
a trigonal twist distortion about the Si-M (M ) Nb, Ta) vector
similar to that observed in other crystallographically characterized
complexes of this ligand.5,16 The M-P and M-CO bond lengths
(Nb-P) 2.5777(14) and 2.6316(11) Å, Nb-CO) 1.935(5) Å,
C-O ) 1.191(5) Å in3 and Ta-P ) 2.618(2), 2.610(2), and
2.584(2) Å, Ta-CO) 1.970(7) and 1.936(8) Å, C-O ) 1.152-
(8) and 1.197(9) Å in4) lie within the normal ranges for low-
valent (formal oxidation states-1 to+1) niobium and tantalum
compounds.9,10,17 The nitrosyl ligands are bonded via their N
atoms, and in both cases, the M-N-O angles are essentially 180°.

However, contrary to the trends observed in other crystallographi-
cally characterized carbonylnitrosyls,4 the M-N and C-O bonds
are longer than the M-C and N-O bonds, respectively, in3 and
4. Nevertheless, the Nb-N and Ta-N bond lengths of 2.094(5)
and 2.144(10) Å, respectively, are shorter than typical Nb-N and
Ta-N single bonds (2.3-2.5 Å) and are consistent with the
existence of M-Nmultiple bond character resulting from MfNO
back-bonding. The N-O bond length in3 is 1.158(5) Å, whereas
that in4 is rather short at 1.066(9) Å when compared to typical
N-O distances in metal nitrosyls which fall in the range of 1.15-
1.25 Å.18 The short N-O bond length measured in the structure
of 4 is probably an artifact of significant thermal disorder in the
MNO group, a feature common to some terminal nitrosyls that
often leads to reductions in the observed N-O distance.19

The room-temperature NMR spectra of3 and 4 in CD2Cl2
display the anticipated signals11 and indicate that the principal
features inherent to their solid-state molecular structures are
retained in solution. The rapid reversal of the twist distortion in
the coordinated trimpsi ligand (Figures 1 and 2) imposes apparent
Cs symmetry upon3 and4 at ambient temperatures. Additional
NMR studies are currently in progress to evaluate if this represents
the only significant dynamic process which3 and4 undergo in
solutions. Our findings in this regard will be reported in a future
contribution.
Finally, we intend to utilize the synthetic methodology sum-

marized in Scheme 1 to prepare also the triazacyclononane-
containing analogues of complexes3 and4. It is anticipated that
this general class of L3M(NO)(CO)2 dicarbonylnitrosyl derivatives
will prove to be excellent starting materials for the initiation of
a comprehensive reactivity study of this area of low-valent early-
transition-metal chemistry just as the related Cp′M(NO)(CO)2
complexes of chromium, molybdenum, and tungsten have been
valuable precursors to a vast array of group 6 organometallic
nitrosyl complexes.20 Our investigations in this regard are
currently in progress.
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Figure 1. Solid-state molecular structure of3.

Figure 2. Solid-state molecular structure of4.
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